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Learning Networks of 
Places and People Using 
Location Data 
      Tony Jebara 
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www 

A network of online places 
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facebook 

A network of online people 
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From online to real networks? 
What’s next? 

     a network of real places 

     a network of real people 

Online data is easy to get, what about the real world? 
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From online to real networks? 
What’s next? 

     a network of real places 

     a network of real people 

Online data is easy to get, what about the real world? 

GPS 
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GPS and location data 

GPS 

VEHICLES APPS MAPS CARRIERS 

SENSE NETWORKS 
ANALYSIS, CITYSENSE, NETWORKS OF PLACES & PEOPLE 

Marketing Advertising Collaborative 
Filtering 

Social 
Recommendation 

Search 
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GPS and location data 
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CitySense: where is everyone 
• Citysense: real-time density of users at every street corner 
• Poisson models find most active bars/restaurants 
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Next: where’s everyone like me 
Need to have a network of people 

  Each dot 
  is a user 

  Dot’s color 
  is user’s 
  social 
  cluster  
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Network of People 
who is like whom? who colocates with whom? 
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Network of People 
Hard to say if User A is like User B… 

… don’t just see if they colocate physically 
… do they overlap semantically (network of places) 

User A User B 
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Network of Places 
Is place A like place B? 
Look at each place’s Flow, Commerce & Demographics 



Tony Jebara 

14 

Network of Places: Flow 

Look at flow A to B 

Markov transition 

Minimum Volume 
Embedding (MVE) 

Color code clusters 
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Network of Places: Commerce 
Get each block’s SIC (standard industrial categorization) code & cluster 
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Network of Places: Demographics 
Get each block’s census demographic data & cluster 
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Encoding people 
  For each user, convert GPS trail 
  into matrix of probabilities for 
  week hour probability of being in 

  1) flow cluster 
  2) sic cluster 
  3) demographic cluster 

Week 
Hour 

FLO 
1 

FLO 
2 

… FLO
20 

SIC 
1 

SIC 
2 

… SIC 
97 

DEM 
1 

DEM 
2 

… DEM 
78 

1 .03 .31 .14 .03 .05 .41 .11 .04 .01 

2 .14 .34 .02 .04 .05 .52 .01 .01 .00 

… 

168 .07 .34 .51 .02 .06 .48 .02 .01 .00 
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Encoding people 
9 example 
users 

 compute 
 pair-wise 
 overlap 
 from 
 weekly 
 exposure 
 matrices 

 real friends 
 should 
 colocate! 
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Connecting Similar People 
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Churn 
Advertising 
Marketing 
Collaborative Filtering 
Demographics 

Network of People 
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Network of People  Tribes 
How often do they go out 
each day of the week? 

Where do they hang out?  

What is the avg age of most 
people in the neighborhoods 
they spend time in? 

How racially diverse are the 
neighborhoods they spend 
time in? 

Are the places they spend 
time in rich neighborhoods or 
poor neighborhoods? 

“Young & Edgy” 
• Out every night in young, 
racially diverse, low income 
neighborhoods 

“Weekend Mole” 
• Out occasionally on 
weeknights, typically 
middle-aged, Latino, middle-
income neighborhoods  

“Mature Homebody” 
• Rarely goes out, typically 
spends nights in mature, 
white, higher income 
neighborhoods 
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Network of People Predictions 
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The Next Net   (Stephen Baker, BusinessWeek) 


