Learning Networks of Places and People Using Location Data

Tony Jebara

Sense Networks

... COLUMBIA UNIVERSITY
IN THE CITY OF NEW YORK

WWW

A network of online places
facebook

From online to real networks?

What's next?

a network of real places
a network of real people

Online data is easy to get, what about the real world?

From online to real networks?

What's next?

Online data is easy to get, what about the real world?

GPS and location data

GPS and location data

Sense Networks

CitySense: where is everyone

-Citysense: real-time density of users at every street corner -Poisson models find most active bars/restaurants

Next: where's everyone like me

Need to have a network of people

Each dot is a user

Dot's color is user's social cluster

Network of People

who is like whom? who colocates with whom?

Network of People

Hard to say if User A is like User B...
User A

... don't just see if they colocate physically
... do they overlap semantically (network of places)

Network of Places

Is place A like place B ?
Look at each place's Flow, Commerce \& Demographics

Network of Places: Flow

Look at flow A to B

Markov transition

Minimum Volume
Embedding (MVE)
Color code clusters

Network of Places: Commerce

Get each block's SIC (standard industrial categorization) code \& cluster

Network of Places: Demographics

Get each block's census demographic data \& cluster

Encoding people

For each user, convert GPS trail into matrix of probabilities for week hour probability of being in

1) flow cluster
2) sic cluster
3) demographic cluster

Week Hour	FLO 1	FLO 2	\ldots	FLO 20	SIC 1	SIC 2	\ldots	SIC 97	DEM 1	DEM 2	\ldots	DEM 78
1	.03	.31		.14	.03	.05		.41	.11	.04		.01
2	.14	.34		.02	.04	.05		.52	.01	.01		.00
\ldots												
168	.07	.34		.51	.02	.06		.48	.02	.01		.00

Encoding people

9 example users
compute pair-wise overlap from weekly exposure
 matrices real friends should colocate!

Tony Jebara

Connecting Similar People

Network of People

Network of People \rightarrow Tribes

Network of People Predictions
 Percent Improvement

The Next Net

Senses MetWOrkS Macrosense Citysense Technology Principles Media Center About Us

